九年级上册期末考试数学题有答案
∴ .…………………………………3分
∴ . ∴A(4,2).
将A(4,2)代入 中,得 . . ……………4分
将 和 代入 得 解之得:
∴ .…………………………………………………………………5分
(2)在 轴的右侧,当 时, ………………………6分
当 < 时 >4. ……………………………………………………7分
24. 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点 顺时针旋转 角,
旋转后的矩形记为矩形 .在旋转过程中,
(1)如图①,当点E在射线CB上时,E点坐标为 ;
(2)当 是等边三角形时,旋转角 的度数是 ( 为锐角时);
(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.
(4) 如图③,当旋转角 时,请判断矩形 的对称中心H是否在以C为顶点,且经过点A的抛物线上.
图① 图② 图③
解:(1) (4, ) ………………………………………………1分
(2) …………………………………………………………………2分
(3)设 ,则 , ,
在Rt△ 中,∵ ,∴ ,
解得 ,即 .
∴ (4, ). …………………………………………………………4分
(4)设以点 为顶点的抛物线的解析式为 .
把 (0,6)代入得, .
解得, .
∴此抛物线的解析式为 .……………………………………6分
∵矩形 的对称中心为对角线 、 的交点 ,
∴由题意可知 的坐标为(7,2).
当 时, ,
∴点 不在此抛物线上. ………………………………………………7分
25.如图,在平面直角坐标系中,顶点为( , )的抛物线交 轴于 点,交 轴于 , 两点(点 在点 的左侧). 已知 点坐标为( , ).
(1)求此抛物线的解析式;
(2)过点 作线段 的垂线交抛物线于点 , 如果以点 为圆心的圆与直线 相切,请判断抛物线的对称轴 与⊙ 有怎样的位置关系,并给出证明;
(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积.
解:(1)设抛物线为 .
∵抛物线经过点 (0,3),∴ .∴ .
∴抛物线为 . …………2分
(2) 答: 与⊙ 相交. ……………………………………3分
证明:当 时, , .
∴ 为(2,0), 为(6,0).
∴ .
设⊙ 与 相切于点 ,连接 ,
则 .
∵ ,∴∠ABO+∠CBE=90°.
又∵∠ABO+∠BAO=90°,
∴ .∴ ∽ .
∴ .∴ .∴ .…………4分
∵抛物线的对称轴 为 ,∴ 点到 的距离为2.
∴抛物线的对称轴 与⊙ 相交. …………………5分
(3) 解:如图,过点 作平行于 轴的直线交 于点 .
由点A(0,3)点C(6,0)可求出直线 的解析式为 .………………6分
设 点的坐标为( , ),则 点的坐标为( , ).
∴ .
∵ ,
∴当 时, 的面积最大为 .
此时, 点的坐标为(3, ). …………………8分
解答(3)的关键是作PQ∥y轴交AC于Q,以PQ为公共底,OC就是高,用抛物线、直线解析式表示P、Q两点的纵坐标,利用三角形的面积推导出面积与P点横坐标m的函数关系式,
即: .
评分说明:部分解答题有多种解法,以上各题只给出了部分解法,学生的其他解法可参照评分标准给分.
《九年级上册期末考试数学题有答案》阅读地址:http://xiezuoyi.com/64136/
已有0条评论,点击查看发表评论