初三上册数学期末考试题附答案
(1)求点D的坐标;
(2)若经过B、C、D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;
(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.
27.(本题12分)如图,抛物线y=49x2-83x-12与x轴交于A、C两点,与y轴交于B点.
(1)求△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动。问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBAN面积的最大值.
初三上册数学期末考试题答案一、选择题
1.D 2.C 3.C 4.C 5.D 6.B 7.B 8.D 9.B 10.A
二、填空题
11.x≤2 12.5 13.2,43 14.6 5 15.24,240π 16.10 17.2π3 18.3-3
三、解答题
19.(1)原式=9-4+15 ……3分 (2)原式=2-26+3+6 ………2分
=3-2+15 =5-6. ………………4分
=1+15 …………4分
20.方法不作要求,只要计算正确,都给分。
(1)(x-2)2=2 ………………2分 (2)(x-3)(2-3x)=0 ……………2分
x-2=±2 ……………3分 x-3=0或2-3x=0…………3分
x=2±2
∴x1=2+2,x2=2-2.……4分 ∴x1=3,x2=23.………………4分
21.(1)树状图或表格略 …………………………………………………………………2分
P(两数差为0)= 14 ……………………………………………………………………… 3分
(2)P(小明赢)=34,P(小华赢)=14 ,∵P(小明赢)>P(小华赢),∴不公平. ……………………5分
修改游戏规则只要合理就得分 …………………………………………………………6分
22.(1)正确画出直线l………………………………………………………………………2分
(-4,2),(-1,1) …………………………………………………………4分
(2)3;(-3,-1)或(0,2)(写出一个即可;讲评时,三个点都找出) ……6分
23.(1)∵AB∥CD, CE∥AD,∴四边形AECD是平行四边形.………………………2分
∵CE∥AD,∴∠ACE=∠CAD. …………………………………………………3分
∵AC平分∠BAD,∴∠CAE=∠CAD.∴∠ACE=∠CAE,∴AE=CE.
∴四边形AECD是菱形. …………………………………………………………4分
(2)(判断)△ABC是直角三角形. …………………………………………………5分
证法一:∵AE=CE,AE=BE,∴BE=CE,∴∠B=∠BCE, ……………………6分
∵∠B+∠BCA+∠BAC=180º,
∴2∠BCE+2∠ACE=180º,∴∠BCE+∠ACE=90º,即∠ACB=90º. ……………7分
∴△ABC是直角三角形. …………………………………………………………………8分
证法二:连DE,则DE⊥AC,且DE平分AC.…………………………………………6分
设DE交AC于F.又∵E是AB的中点,∴EF∥BC, …………………………………7分
∴BC⊥AC,∴△ABC是直角三角形. …………………………………………………8分
24.(1)BP与⊙O相切. ……………………………………………………………………1分
理由如下:
∵AB是⊙O的直径
∴∠ACB=90即AC⊥BC.…………………………………………………………………2分
∵PF∥AC, ∴∠CAB=∠PEB. ………………………………………………………3分
∵∠ADC=∠ABC, ∠BPF=∠ADC,∴∠ABC=∠BPF.……………………………4分
∴△ABC∽△EPB……………………………………………………………………………5分
《初三上册数学期末考试题附答案》阅读地址:http://xiezuoyi.com/65265/
已有0条评论,点击查看发表评论