初三上期期末考试数学卷及答案
有一个高效的数学复习方法,会让你的初三数学期末考试成绩突飞猛进的。
初三上期期末考试数学卷一、 选择题(本题共32分,每题4分)
1. 已知 ,那么下列式子中一定成立的是( )
A. B. C. D.xy=6
2. 反比例函数y=-4x的图象在( )
A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限
3. 如图,已知 ,那么添加下列一个条件后,仍无法判定
△ABC∽△ADE的是( )
A. B. C. D.
4. 如图,在Rt△ABC中,∠C=90°,AB=5,AC=2,则cosA的
值是( )
A.215 B.52 C.212 D.25
5. 同时投掷两枚硬币每次出现正面都向上的概率是( )
A. B. C. D.
6. 扇形的圆心角为60°,面积为6 ,则扇形的半径是( )
A.3 B.6 C.18 D.36
7. 已知二次函数 ( )的图象如图所示,有下列
结论:①abc>0;②a+b+c>0;③a-b+c<0;其中正确的结论有( )
A.0个 B.1个 C.2个 D.3个
8. 如图,在平面直角坐标系中,四边形OABC是菱形,点C的
坐标为(4,0),∠AOC= 60°,垂直于x轴的直线l从y轴出发,
沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与
菱形OABC的两边分别交于点M,N(点M在点N的上方),
若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),
则能大致反映S与t的函数关系的图象是( )
二、 填空题(本题共16分,每题4分)
9. 若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21cm,则其余两边长的和为 .
10. 在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径作圆,则点C与⊙A的位置关系为 .
11. 已知二次函数 的图象与x轴有交点,则k的取值范围是 .
12. 某商店将每件进价8元的商品按每件10元出售,一天可以售出约100件,该商店想通过降低售价增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件,那么要想使销售利润最大,则需要将这种商品的售价降
低 元.
三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)
13.计算:
14.已知:如图,在△ABC中,∠ACB= ,过点C作CD⊥AB于点D,点E为AC上一点,过E点作AC的垂线,交CD的延长线于点F ,与AB交于点G.
求证:△ABC∽△FGD
15. 已知:如图,在△ABC中,CD⊥AB,sinA= ,AB=13,CD=12,
求AD的长和tanB的值.
16. 抛物线 与y轴交于(0,4)点.
(1) 求出m的值;并画出此抛物线的图象;
(2) 求此抛物线与x轴的交点坐标;
(3) 结合图象回答:x取什么值时,函数值y>0?
17.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请你在网格中画出一个△OCD,使它的顶点在格点上,且使△OCD与△OAB相似,相似比为2︰1.
18. 已知:如图,AB为半圆的直径,O为圆心,C为半圆上一点, OE⊥弦AC于点D,交⊙O于点E. 若AC=8cm,DE=2cm.
求OD的长.
四、解答题(本题共15分,每题5分)
19.如图,已知反比例函数y= 与一次函数y=-x+2的图象交于A、B两点,且点A的横坐标是-2.
(1)求出反比例函数的解析式;
(2)求△AOB的面积.
20. 如图,甲、乙两栋高楼,从甲楼顶部C点测得乙楼顶部A点的仰角 为30°,测得乙楼底部B点的俯角 为60°,乙楼AB高为120 米. 求甲、乙两栋高楼的水平距离BD为多少米?
21. 如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.
(1)求证:DB平分∠ADC;
(2)若BE=3,ED=6,求A B的长.
五、解答题(本题6分)
22. 端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏.
其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)
23.已知抛物线 的图象向上平移m个单位( )得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成 的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象. 请写出这个图象对应的函数y的解析式,同时写出该函数在 ≤ 时对应的函数值y的取值范围;
(3)设一次函数 ,问是否存在正整数 使得(2)中函数的函数值 时,对应的x的值为 ,若存在,求出 的值;若不存在,说明理由.
24. 如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.
(1)求证:AB•AF=CB•CD;
(2)已知AB=15 cm,BC=9 cm,P是射线DE上的动点.设DP=x cm( ),四边形BCDP的面积为y cm2.
①求y关于x的函数关系式;
②当x为何值时,△PBC的周长最小,并求出此时y的值.
25. 在平面直角坐标系中,抛物线 与 轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)求抛物线的解析式和顶点坐标;
(2)在 轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
初三上期期末考试数学卷答案三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)
13.解:
= …………………………………………….4分
= …………………………………………..5分
14.证明:∵∠ACB= , ,
∴∠ACB=∠FDG= . ……………………………….1分
∵ EF⊥AC,
∴ ∠FEA=90°. ……………………………….2分
∴∠FEA=∠BCA.
∴EF∥BC. ……………………………………..3分
∴ ∠FGB=∠B. ………………………………….4分
∴△ABC∽△FGD ………………………………..5分
15.解:∵CD⊥AB,
∴∠CDA=90°……………………………………1分
∵ sinA=
∴ AC=15. ………………………………………..2分
《初三上期期末考试数学卷及答案》阅读地址:http://xiezuoyi.com/68858/
已有0条评论,点击查看发表评论