初三上期期末考试数学卷及答案
∴ ,即 .
∴AB•AF=CB•CD. ………………………2分
(2)解:①∵AB=15,BC=9,∠ACB=90°,
∴ ,∴ .……………………3分
∴ ( ). ………………………………………4分
②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由(1)知,点C关于直线DE的对称点是点A,∴PB+PC=PB+PA,故只要求PB+PA最小.
显然当P、A、B三点共线时PB+PA最小.
此时DP=DE,PB+PA=AB. …………………………5分
由(1), , ,得△DAF∽△ABC.
EF∥BC,得 ,EF= .
∴AF∶BC=AD∶AB,即6∶9=AD∶15.
∴AD=10.
Rt△ADF中,AD=10,AF=6,
∴DF=8.
∴ . …………………………………………6分
∴当 时,△PBC的周长最小,此时 . ………………………………………7分
25.解:(1)由题意,得
解得,
抛物线的解析式为y=-x2-2x+3 …………………………………1分
顶点C的坐标为(-1,4)………………………2分
(2)假设在y轴上存在满足条件的点D, 过点C作CE⊥y轴于点E.
由∠CDA=90°得,∠1+∠2=90°. 又∠2+∠3=90°,
∴∠3=∠1. 又∵∠CED=∠DOA =90°,
∴△CED ∽△DOA,
∴ .
设D(0,c),则 . …………3分
变形得 ,解之得 .
综合上述:在y轴上存在点D(0,3)或(0,1),
使△ACD是以AC为斜边的直角三角形. ………………………………… 4分
(3)①若点P在对称轴右侧(如图①),只能是△PCQ∽△CAH,得∠QCP=∠CAH.
延长CP交x轴于M,∴AM=CM, ∴AM2=CM2.
设M(m,0),则( m+3)2=42+(m+1)2,∴m=2,即M(2,0).
设直线CM的解析式为y=k1x+b1,
则 , 解之得 , .
∴直线CM的解析式 .…………………………………………… 5分
,
解得 , (舍去).
.
∴ .………………………………………………6分
②若点P在对称轴左侧(如图②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.
过A作CA的垂线交PC于点F,作FN⊥x轴于点N.
由△CFA∽△CAH得 ,
由△FNA∽△AHC得 .
∴ , 点F坐标为(-5,1).
设直线CF的解析式为y=k2x+b2,则 ,解之得 .
∴直线CF的解析式 . ……………………………………………7分
,
解得 , (舍去).
∴ . …………………………………8分
∴满足条件的点P坐标为 或
《初三上期期末考试数学卷及答案》阅读地址:http://xiezuoyi.com/68858/
已有0条评论,点击查看发表评论